Curved exponential family models for social networks
نویسنده
چکیده
Curved exponential family models are a useful generalization of exponential random graph models (ERGMs). In particular, models involving the alternating k-star, alternating k-triangle, and alternating k-twopath statistics of Snijders et al (2006) may be viewed as curved exponential family models. This article unifies recent material in the literature regarding curved exponential family models for networks in general and models involving these alternating statistics in particular. It also discusses the intuition behind rewriting the three alternating statistics in terms of the degree distribution and the recently introduced shared partner distributions. This intuition suggests a redefinition of the alternating k-star statistic. Finally, this article demonstrates the use of the statnet package in R for fitting models of this sort, comparing new results on an oft-studied network dataset with results found in the literature.
منابع مشابه
Inference in Curved Exponential Family Models for Networks
Network data arise in a wide variety of applications. Although descriptive statistics for networks abound in the literature, the science of fitting statistical models to complex network data is still in its infancy. The models considered in this article are based on exponential families; therefore, we refer to them as exponential random graph models (ERGMs). Although ERGMs are easy to postulate...
متن کاملLearning Hidden Curved Exponential Family Models to Infer Face-to-Face Interaction Networks from Situated Speech Data
In this paper, we present a novel probabilistic framework for recovering global, latent social network structure from local, noisy observations. We extend curved exponential random graph models to include two types of variables: hidden variables that capture the structure of the network and observational variables that capture the behavior between actors in the network. We develop a novel combi...
متن کاملDiscovering Long Range Properties of Social Networks with Multi-Valued Time-Inhomogeneous Models
The current methods used to mine and analyze temporal social network data make two assumptions: all edges have the same strength, and all parameters are time-homogeneous. We show that those assumptions may not hold for social networks and propose an alternative model with two novel aspects: (1) the modeling of edges as multi-valued variables that can change in intensity, and (2) the use of a cu...
متن کاملUsing Ancillary Statistics in On-line Learning Algorithms
| Neural networks are usually curved statistical models. They do not have nite dimensional suucient statistics, so on-line learning on the model itself inevitably loses information. In this paper we propose a new scheme for training curved models, inspired by the ideas of ancillary statistics and adaptive critics. At each point estimate an auxiliary at model (exponential family) is built to loc...
متن کاملDiscrete Temporal Models of Social Networks
We propose a family of statistical models for social network evolution over time, which represents an extension of Exponential Random Graph Models (ERGMs). Many of the methods for ERGMs are readily adapted for these models, including MCMC maximum likelihood estimation algorithms. We discuss models of this type and give examples, as well as a demonstration of their use for hypothesis testing and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Social networks
دوره 29 2 شماره
صفحات -
تاریخ انتشار 2007